Vector analysis and integral equations
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولNon-autonomous vector integral equations with discontinuous right-hand side
We deal with the integral equation u(t) = f(t, R I g(t, z)u(z) dz), with t ∈ I := [0, 1], f : I × R → R and g : I × I → [0,+∞[. We prove an existence theorem for solutions u ∈ L(I,R), s ∈ ]1,+∞], where f is not assumed to be continuous in the second variable. Our result extends a result recently obtained for the special case where f does not depend explicitly on the first variable t ∈ I.
متن کاملVector integral equations with discontinuous right - hand side
We deal with the integral equation u(t) = f( R I g(t, z)u(z) dz), with t ∈ I = [0, 1], f : R → R and g : I×I → [0,+∞[. We prove an existence theorem for solutions u ∈ L(I,R) where the function f is not assumed to be continuous, extending a result previously obtained for the case n = 1.
متن کاملA Priori Solution Estimates for Nonlinear Vector Integral Equations
Nonlinear vector integral equations are considered. Solution estimates and solvability conditions are derived. Applications to the periodic boundary value problem are also discussed. Under some restrictions our results improve the well-known ones. The main tool in the paper is the recent estimates for the resolvent of Hilbert-Schmidt operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Časopis pro pěstování matematiky a fysiky
سال: 1923
ISSN: 1802-114X
DOI: 10.21136/cpmf.1923.123256